UA-48457078-1
Your browser version is outdated. We recommend that you update your browser to the latest version.

 



 

 
Warburg effect - Nobelisti Otto Heinrich Warburg

Kuvassa mitokondrio

Nobel palkinnon voittanut tohtori Otto Warburg keksi, että laskemalla kudosten happipitoisuutta 35 % kahden vuorokauden ajaksi, normaalit solut muuttuivat syöpäsoluiksi.

Syöpäpotilailla veren happisaturaatio on normaalia alhaisempi, yleensä noin 60 % luokkaa (pulssioksimetrialla mitattuna). 

 
 The Warburg Effect describes the observation that cancer cells, and many cells grown in-vitro, exhibit glucose fermentation even when enough oxygen is present to properly respire.

The Warburg hypothesis, sometimes known as the Warburg Theory of Cancer postulates that the driver of tumorigenesis is an insufficient cellular respiration caused by insult to mitochondria.[1] The Warburg Effect describes the observation that cancer cells, and many cells grown in-vitro, exhibit glucose fermentation even when enough oxygen is present to properly respire. In other words, instead of fully respiring in the presence of adequate oxygen, cancer cells ferment. The current popular opinion is that cancer cells ferment glucose while keeping up the same level of respiration that was present before the process of carcinogenesis, and thus the Warburg Effect would be defined as the observation that cancer cells exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen.[2]

Warburg's hypothesis was postulated by the Nobel laureate Otto Heinrich Warburg in 1924.[3] He hypothesized that cancer, malignant growth, and tumor growth are caused by the fact that tumor cells mainly generate energy (as e.g. adenosine triphosphate / ATP) by non-oxidative breakdown of glucose (a process called glycolysis). This is in contrast to "healthy" cells which mainly generate energy from oxidative breakdown of pyruvate. Pyruvate is an end-product of glycolysis, and is oxidized within the mitochondria. Hence, according to Warburg, the driver of cancer cells should be interpreted as stemming from a lowering of mitochondrial respiration. Warburg reported a fundamental difference between normal and cancerous cells to be the ratio of glycolysis to respiration; this observation is also known as the Warburg effect.

_
http://en.wikipedia.org/wiki/Warburg_hypothesis

 



 Soluhengitys ja käyminen, eli hapeton (anaerobinen) energiantuotto

 
Mitokondrio on soluelin, jossa soluhengitys tapahtuu.
Mitokondriot ovat solujen voimaloita, joissa energiaa muodostetaan kemiallisesti, ja se varastoidaan korkeaenergiaisiin fosfaatteihin, yleensä ATP:hen eli adenosiinitrifosfaattiin

Soluhengitys on aerobisissa (happea saatavilla) oloissa elävien solujen aineenvaihdunnallinen reaktio, jonka avulla solut vapauttavat ravinnon sisältämää energiaa käyttöönsä

Yksinkertaistettuna soluhengityksen lähtöaineina ovat glukoosi ja happi ja lopputuotteena syntyy hiilidioksidia ja vettä. Reaktioissa vapautuu ATP-molekyylien (fosfaatti -sidos) sidoksien purkautuessa energiaa (36 x ATP).

Elektroninsiirtoketju (ja mitokondrio)
Katabolisen aineenvaihdunnan viimeinen vaihe on elektroninsiirtoketju, joka on yhteydessä oksidatiiviseen fosforylaatioon.
Videossa
 tutustutaan myös mitokondrion rakenteeseen.

Soluhengitys - CellularRespiration -Animaatio

Anaerobisissa olosuhteissa soluhengitys ei pääse etenemään glykolyysivaihetta pidemmälle, jolloin tapahtuu käymistä
Käyminen voi olla joko maitohappo- tai alkoholikäymistä. 
Käymisessä saatavan ATP:n määrä on hyvin pieni (2 x ATP), verrattuna aerobisissa oloissa tapahtuvaan soluhengitykseen.

Käyminen, eli fermentointi on aineenvaihduntatapahtuma, jossa pilkotaan orgaanisia aineita, usein hiilihydraatteja tai aminohappoja, energian saamiseksi. Käyminen tapahtuu tavallisesti ilman happea, mutta on olemassa myös niin sanottuja hapetuskäymisiä, jotka vaativat happea. 
Käyminen tapahtuu solun sisällä.

Alkoholikäymisessä sokeri (yleensä glukoosi) hajoaa hiivan (Saccharomyces cerevisiae) tai bakteerien sisältämien entsyymien katalysoimissa aineenvaihduntareaktioissa pyruvaatiksi. Reaktiota nimitetään glykolyysiksi, ja sen yhteydessä syntyy ATP:tä solun energianlähteeksi. Glykolyysissä syntynyt pyruvaatti puolestaan hajoaa edelleen asetaldehydiksi ja hiilidioksidiksi.
Käymisreaktio on anaerobinen eli ei edellytä happea.

Nisäkkäillä lihassolut voivat tuottaa energiaa maitohappokäymisellä, elleivät ne saa verenkierrosta riittävästi happea. Maitohapon kertyminen soluihin aiheuttaa lihaskipua. Rasituksen loputtua maitohappo kulkeutuu lihaksista veren mukana maksaan, jossa se muuntuu takaisin pyruvaatiksi.

Glukoosi hajoaa solulimassa kahdeksi pyruvaatti-molekyyliksi (palorypälehappo) reaktiossa, jota kutsutaan glykolyysiksi, tai jos pyruvaatti pelkistyy maitohapoksi eikä jatka matkaansa mitokondrioon, anaerobiseksi (hapettomaksi) glykolyysiksi.

Pyruvaatin pelkistyessä NADH luovuttaa saamansa vedyn pyruvaatille. Glykolyysissä muodostuu yhtä glukoosia kohden 2 ATP molekyyliä, sekä kumpaakin puryvaattia kohden 6 vety-ionia (protonia), eli yhteensä 12 protonia, jotka pelkistävät NAD+ tai NADP+ (dihydronikotiiniamidi-adeniini-dinukleotidi/-"-fosfaatti) ionit. Muodostuneet NADH ja NADPH molekyylit siirtävät protonit elekronisiirtoketjun käyttöön, jos happea on tarpeeksi soluhengityksen käynnistämiseen

_
Jos kuitenkaan soluissa ei ole mitokondrioita, jossa soluhengitys voi tapahtua (veren punasolut ovat tällaisia) tai ei ole happea käytössä (kuten happivelassa), niin pyruvaatti muuntuu maitohapoiksi. Tällaista maitohappoon päättyvää glykolyysiä sanotaan anaerobiseksi glykolyysiksi.
- maitohappo on myrkyllistä liian korkeina pitoisuuksina.
Soluhengitys ja yhteyttäminen

"Hapeton soluhengitys" - Anaerobic respiration 
Anaerobic respiration is a form of respiration using electron acceptors other than oxygen. Although oxygen is not used as the final electron acceptor, the process still uses a respiratory electron transport chain; it is respiration without oxygen.
_
Souhengitys -cellular respiration, kuvia
_
Elektroninsiirtoketju
http://fi.wikipedia.org/wiki/Elektroninsiirtoketju

 

Cookie politiikka?

Tama sivusto kayttaa cookieita tunnistaakseen käyttäjät.

Hyvaksytko cookiet?

Ostoskori 0tuotteet
Välisumma€0,00